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The paper considers the possibility of making more exact the theory of 

plates based on Kirchhoff’s hypothesis. The problem of the bending of a 

plate is formulated as a three-dimensional problem of the theory of 

elasticity which can be solved by an iteration process; it is assumed 

that one of the extensions of the region under consideration is small 

compared with the other two. The required state of stress of the plate 

is presented as the sum of a slowly damped state of stress, derived by 

means of a basic iteration process, and states of stress which are 

rapidly damped with increase in distance from the edge, and which are 

derived by means of auxiliary iteration processes. Such an approach is 

often used in the asymptotic integration of differential equations (see 

[l]) and corresponds to the physical nature of the problem. The basic 

iteration process enables us to find the state of stress which is given 

as a first approximation by the classical theory. The auxiliary itera- 

tion process allows us to take into account the stress distribution at 

the edges which were discussed in attempts to make the classical theory 

more exact by replacing Kirchhoff’s hypothesis by alternative assump- 

tions (see, for example, [2-61) . 

1. It is required to solve the following system of differential equa- 

tions of the theory of elasticity: 

The equilibrium equations 

1000 
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the formulas for the displacements and stresses 

E a’ Fz = Qx - y (ay + a,) Ho, E+z, - xJ (ax + $I) 

E ($ + g) = 2 (I + v) z,, 
(1.2) 

(w), E(5+3=2(1 +v)G,, 

Here and in what follows the symbol (xyl will be used to denote the 
existence of a second relation derived from the given expression by re- 
placing x and u by y and u and vice versa. 

It is assumed that the z-axis of a Cartesian system of coordinates is 
perpendicular to the plane of the plate and that the x and y axes are 
situated in the middle plane of the plate. Since we are concerned with 
the bending of the plate, it is assuned throughout that the required 
state of stress and strain in the plate is skew-sysmnetrical about the 
nay plane. 

We denote the thickness of the plate by 2h and then the following 
boundary conditions must be satisfied on the planes z = f h: 

where p(n, y) is the normal external load intensity. 

We shall make use of the relation 

ats,/az = 0 at XI*& (1.4) 

which follows from (1.3) and the third of Equations (1.1). 

The boundary conditions on the lateral surfaces of the plate will be 
formulated later. 

2. A basic iteration process is defined as one which enables the 
basic states of stress (those that are not rapidly damped with increase 
in distance from an edge of the plate) to be found. 

It is assumed that in the basic state of stress the stresses and dis- 
placements do not change too rapidly with respect to the variables (x,y). 
In the z direction these quantities obviously must vary rapidly. We shall 
therefore use the well-known method of scale extension and replace z 
according to the formula 

z =hc (2.1) 

assuming that the rate of change of the stresses and displacements with 
respect to the variables (x, y, (1 is not too high. 
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Equations (1.1) and (1.2) now become 

% + f?$ + h-1 ‘$ = 0 

E 
au 
- = Qx -V(QY + a*) 

E (h-l g+ g) = 2 (1 + v) z,, 

WV), Eh-’ g = cs2 - v (a, + tsy) (2.2) 

MO, E(g+;)=2(1+v)7~, 

If Q is any one of the stresses or displacements, it can be expressed 
in the form 

s=s 
Q = h-q 2 ha-‘Q(‘) 

1-l 
(2.3) 

Here Q is an integer which is different for different displacements 
and stresses and which is defined by the following expressions: 

(the number K remaining for the present unspecified). 

We express the stresses and displacements in Equations (2.2) in the 
form (2.31, (2.4) and equate coefficients of equal powers of h on the 
left- and right-hand sides of each equation taken separately. We then 
obtain the system of equations 

0 
at.$ at;;) as,@) 

(W). --Y&y + ay + ag = 0 (2.5) 

E 2;: = Q) _ v (Q,W + g,(W) (XY) 

E 
ad*) 

7 
= &b-4) _ v (&b-2) + ~~(8-2)) 

= 2(1 + q&2) WY) 

E- 
C 
au(S) ada) 

- 
ay + ax =2(1 +v)z,f) 

Here and in the future it is considered that the quantities Q(*) E 0 
for s < 1. 

Equations (2.5) form a chain of systems of equations, and the basic 
iteration process consists of the successive determination (in order of 
magnitude of s) of Q (‘) from the appropriate system. The value of Q ( s+l) 

is determined from the values of Q(l), Qt2), . . . , Q’ ‘) already found. 
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3. The quantity Qts), i.e. the solution of the system of equations 
(2.5)) will be expressed as the sum of two terms oi”) + Q*“). l’he first 
term represents the integral of the homogeneous system 

obtained as a result of discarding from (2.5) quantities with a super- 
script less than s, and the second term represents a particular integral 
of the nonhomogeneous system (2.5) in which all the quantities with a 
superscript less than s are considered to be known. 

‘Ihe system (3.1) can be easily integrated to give 

Z&if’) = &,C’) &J/f+ w@ = w,W 

cf $6) = x1 t;o 69 
xt Mf. 2;$) = &$j, t,‘;) = J”t,$’ + & (xv) 

Q,I = g%$’ + fbzff (3.2) 

Here the quantities distinguished by an additional numerical subscript 
(the subscripts are equal to the power of 5 by which this quantity is 
multiplied) are functions of two variables (x, y) related by the follow- 
ing equalities: 

awp 
u,(‘) -_ - - wi). (8) 

ax 0x1 
-_ - A2 (y + vgp’) (xl/) 

The integral of equations (2.5) 

r: 

can be written as follows: 

- v (6X( +‘)I + g,(+-t))] (j[ 

If 
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Here the quantities distinguished by an asterisk are functions of the 
variables (x, y, 5); those without the asterisk and with a superscript 
less than s are considered to be known quantities. 

As has already been pointed out, Qts) E 0 for s < 1. Therefore, it 
follows from (3.4) that Q*(l) and Q*(2), quantities with an asterisk and 
with s = 1 and s = 2, are identically zero. For s > 2 these quantities 
are polynomials in the variable ?j and can be found from the recurrence 

formulas (3.4). 

It is required that the stresses found by means of the basic itera- 

tion process satisfy the boundary conditions (1.3) and (1.4). More 
precisely, we shall iqose the even more stringent requirements that 

6zf’f = 0 (s > 1) 
8% S=h(c=i) 

bQz(o)/az = 0, I2 = 0, TV!“’ = 0, (s>I i) I 
Analogous conditions will be satisfied automatically at z = - h, since 
the problem is skew-syauaetrical. 

With the aid of (2.3), (2.4.) and (3.2) we obtain 

h’-x-e (z,:z” + rx$+ ax:) = 0 (xv) (3.5) 

fkre P1 = p and p, = 0 for s > 1. 

It is assumed that p(x, y) is independent of h and that the quantities 
Q’ 8) and Q*(S) also need not depend on h. If we satisfy this requirement 
and put K = 0 we can solve equations (3.5) for oz:‘), crz:*), TI$, Ti$. 
Bearing in mind that quantities distinguished by an asterisk are nonzero 
only for s > 2, we find that 
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(‘) e _!_ as3 2 (5L*(‘) -?$, # = _ + ( 36,*(3) - !$+>q (3.6) 

(2) ‘lhus ozil) can be expressed in terms of p, aZ3 = 0, and for s > 2, 
az3 can be expressed in terms of quantities distinguished by the super- 
scri 

P 
t 

(’ 
(s) and an asterisk. ‘Ihis means that for any s we can consider 

=z3 
to be a known quantity if s - 2 first approximations have been 

found, and consequently, (3.3) forms a system from which 

can be determined. 

It will be noticed that this system reduces to a nor$Togeneous (for 

s > 2) biharmonic equation (with respect to x, y) in ‘oa . 

4. Let us turn now to the auxiliary iteration process, i.e. the pro- 
cess by means of which we find the states of stress which are damped, no 
matter how rapidly (for a sufficiently small h), with increase in dis- 
tance from some fixed line in the plane xoy. In order to simplify the 
computations, it is assumed throughout that this line is x = 0 and that 
damping takes place on the side x < 0. 

If in (1.1) and (1.2) we make the substitutions 

the seconf of which is the same as (2. l), we obtain 

(4.1) 

E (h-l $ + ‘$) = 2 (1 + v) q,r, Eh-’ ($ + g) = 2 (1 + q TX, 

E (~+~-l~)=2(1+~)~~, 

It will be assumed that the rate of variation of the unknown quant 
ties with respect to the variables (c, y, 5) is not too high. 

l- 

R We denote any of the unknown stresses or displacements by R, where 
is defined as 
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(4.21 

Here r has different values for different stresses and displacements, 
and there are two possible variants for the choice of values of r. 

The first variant is given by 

(rxl!, %lz) --+r=-Ah, (ox, o,, TX,, o,) + r = 
(U, zu) -+ r = - h + 2, v--+r:-A+l 

and the second by 

(G, o,, rXz, 0,) -+ r = - lr + 1, (rXV, r,,) -+ r = 
(u, W) +- r = - p + 2, v--+r=---+3 

where A and u are for the present arbitrary numbers. 

h-t1 
(4.3) 

lJ+2 
(4.4) 

Correspondingly, it is possible to formulate two variants of the 
auxiliary iteration process. In order to do so we substitute expansions 
(4.2) into equations (4. l), express r according to formulas (4.3) or 
(4.4) and then equate coefficients of equal powers of h on the right- 
and left-hand sides of each equality taken separately. In this way we 
obtain 

aQQ a$) aa!=) 
-- 

at + ay + at 
-=O, E 

E = 2 (1 + Y) +, 

L7 ( au(y) , adal 
1) \-T&--T ag, ==2(1 +vpcg I) 

au(a) - = g,(a) - y (QyW + 6,W) 
ak 

a,(P) 
- = g,(a) - Y(Q,W + &'"') 
ay 

(4.5) 

ada) - zzz gp - v (&(a) + Q,W) 
a; 

E a;;) I a;;) ) 
i 

= 2 (1 + v) z,l”’ 

Here a, p, y are defined by 

a = s, fi = s, y=.S - 2 for the first variant 
a=s, S=s-2, 7 = s for the second variant 

In equations (4.5)) as before, Rcs’ e 0 for s < 1. 

(4.6) 
(4.7) 
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5. Let us make a more detailed examination of the first variant of 
the auxiliary iteration process. According to (4.6) we can express the 
system of equations (4.5) in the form 

az,p ao,@-2’ a$’ -- 
aE; + ay +T=O (5-l) 

B (A!$_ + 5bifz?‘) = 2 (1 + y) Q), 
a&-2) 

a@ ;J fsf 

E pg.7 1 =2 (1 +v)r$’ 

ar,!llt ar$ t%,!“) &st(@ 
-;iti;-+*+T=o, ~+~+-aS_=O (5.2) 

E aac’,_o (8) 
ag %- 

v (o,W + o,(s)), E $ = gv@) - y (g,(S) + o,(G) 

ad) 
-) = 2(1 fV)T,?’ 

4 

be expressed by 

(5.3) 

E 
&U(“) - = &W - y (g,(s) + qp), at E (F+ 

The solution of equations (5.1) and (5.2) can 

@‘t = @ + &‘“’ 

and we shall assume that: 

(~$2, r$ , z$‘) is the general solution of the homogeneous system ob- 

tained by equating to zero quantities with a superscript (s - 2) 

in (5.1); 

(Q$, r (8) 
x21 , Qy(ls), &v, et ZL$‘) is the particular integral of the non- 

homogeneous system of equations obtained by putting 

in (5.2) and assuming that these quantities are known; 

tr $tf), zJ@, VI*@)) is the particular integral of the nonhomogeneous 

system (5.1), in which the quantities with a superscript (s - 2) 
are considered to be known; 

(oJU), Q’, Q v;(8), Q), $) ( w;“‘) is the particular integral of the 

nonhomogeneous system (5.2) obtained by putting 

and assuming that they are known quantities. 

Since R(S-2) = 0 for s = 1, 2, we can put R;“’ = 0, Rt(‘) = 0. 
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In the first variant of the auxiliary iteration proceTs)the basic 
system of equations is the one which determines (v(*jl vyfz* “I fS)). It 
is the system of differential equations obtained in”‘6e problem of 
torsion of a prismatic rod (with its axis along the y axis). 

6. The solution denoted by flits) in Formula (5.3) is obtained by 
integration of a harmonic equation. Indeed, if we discard quantities with 
a superscript f s - 2) in (5.11, all these equations can be satisfied by 
putting 

(6.1) 

t$$ zzz 
84 y(s) 

r$ = - 
pyw 

ap f 
zt”! =: $8) = - 

WI wc t 
&W = JQ”w I = 2(1 +V)ag 

where ytsf is a harmonic function of the variables c, 5 

+ 
a2yW 

aca = 0 (6.2) 

Equations (5.2) will also be satisfied if we put 

t.@) = 6;;) = 0, qp) r.z q 

EuW = E&d= - 2 (1$- y) q , 
\ 

7. Let us now consider the second variant 

process; according to (4.7), Equations (4.5) 

(6.3) 

of the auxiliary iteration 
can be written as follows: 

aa*w az (+-2) 
-w at;;) &f (s-4 

a:+ a9 +,j=t aE+ ii + ag 
ar,!") o ass w = o 

E auf*) 
F= 5-p - v (G,(S) + 5,‘“‘) 9 E av(s--2) -_ a,@) - y (ozW + o,(~)) 

ay 
(7.1) 

& aw(*) 
ag= o,(*) - v (a,(“) + o,(*)), E = 2 (1 + Y) Z.J!’ 

ax_$) h,(s) a%;;) 
ag +T$j-+al,= 

o 
(7.2) 

= 2 (1 + Y) z$t”‘, E = 2(1 _tY)Z$ 

We can express the solution to this system of equations in the form 

@“’ zz J&r (8) + &*@f (7.3) 

and we shall assume that: 
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@$j t r-J* I uJ;i, ts$, ~11 ia), ZQ (8)) is the general solution 

homogeneous system of equations obtained by equating to 
quantities with a superscript (s - 2) in (7.1); 

1009 

of the 

zero 

(z (8) xv11 ’ q& ’ VII(‘)) is the particular integral of the nonhomogeneous 

system of equations obtained by putting 

a,(*) = a& a$’ = Z.&, o,W = o&j, or&l = o (8) 
VII 

n(8) = u#), w(s) = Q(8) 

in (7.2) and assuming these to be known quantities; 

(c$j@, z,:f’I, ay*,ff, b*;f), z.Q*(@, WrI*@f) is the particular integral 

of the nonhomogeneous system (7.1) in which quantities with a 
superscript (s - 2) are considered to be known; 

(rx2f”t 7 q$, VII*@)) is the particular integral of the nonhomogeneous 

system of equations obtained by putting 

in (7.2) and considering these as known quantities. 

The puaneities R’ ‘) and II’*’ are zero and we can 
I?;:‘) end R;i*’ are also zero. 

In the second variant of the auxiliary iteration 
system of equations is the one which determines 

therefore accept that 

process the basic 

ug, t (8) 
UII’ qj, qj, zQ@), w~p’f 

It is the system of differential equations obtained in the problem of 

plane deformation (in the plane A). 

8. The solution denoted by R,:” in formula (7.3) is obtained by 
integrating a biharmonic equation. Indeed, if we discard all the quanti- 
ties with a superscript (s - 2) in (7.1), we can satisfy all these equa- 
tions by putting 
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where a($’ is a biharmonic function of the variables c, 5 

Equations (7.2) can also be satisfied if we put 

9. We shall make the stipulation that in both variants of the aux- 

iliary iteration process the homogeneous boundary conditions (1.3) must 

be satisfied in each approximation. In this way conditions (1.3) will be 

satisfied for the sum of integrals corresponding to all three iteration 

processes, 

It will be assumed that in formulas (5.3) and (7.3) the particular 

integrals R;’ ” and Rr,‘“’ are chosen such that they both satisfy the 

homogeneous boundary conditions (1.3) for any value of s and both are 

damped with increase in distance from < = 0 in the direction i$ < 0. 

‘lbe determination of R;“’ and Rf,“‘, each taken separately, reduces 

to the integration of a system of equations equivalent to a single 

Poisson equation and to a no~~~eneous biharmonic equation. It is 

therefore assumed that there are sufficient arbitrary constants of inte- 

gration to satisfy all these requirements, since no conditions are im- 

posed on R;‘$) and R;,“’ on the edge { = 0. 

With such a choice of Rf”’ and R;,‘s’ the integrals RI(‘) and RII(s’ 

in (5.3) and (7.3) must also satisfy the homogeneous boundary conditions 

fl.3) and the damping condition as $ _ - ~0~ Furthermore, in deriving 
R (0) and R [Sf certain arbitrary constants must be retained for satis- 

f$ng the b&dary canditions on the edges of the plate. 

In addition to the homogeneous boundary conditions and the damping 

conditions, we shall therefore make the further requirement that: 

for R, f *j one boundary condition of the form 

I[@) = 7p3 at E=O (9.1) 
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and for RII(s1 two boundary conditions of the form 

for E = 0 (k = 1,2) (9.2) 

are satisfied. 

Here rr( s, and rll:S) are homogeneous linear functions of quantities 
which have been denoted by R,(s) and fiXI( respectively, and*yl(” and 

YIik (‘) are arbitrary functions of the variable (y, jl. 

The quantities R,’ s, are defined by formulas (6.1) and (6.3). It is 
easy to see that they will satisfy the homogeneous boundary conditions 
(1.3) provided that Yfs) satisfies the boundary conditions 

FP - 0 

ac 
for % = fl (9.3) 

in addition to the equation (6.2). 

From now on we shall be concerned with only two variants of conditions 

(9.1)) name1 y 

It can easily be shown that Equation (6.2) has a (unique) solution 
which at 5 = f 1 satisfies condition (9.31, is damped as c * - m, and 
which at E;: = 0 satisfies one of the conditions (9.4) whatever the func- 
tion y1 (which, of course, possesses certain properties of continuity). 

It is possible to obtain this solution by the method of separation of 
variables. 

For RII(s), however, the question of the existence of such solutions 
is far more complex. ‘lhe quantities fixI are defined by Formulas (8.1) 
and (8.3). It will readily be seen that they will satisfy the homogeneous 
boundary conditions (1.31 provided Q(‘) satisfies the boundary conditions 

a(s) __ e _ 0 

ac 
for < = f 1 (9.5) 

in addition to Equation (8.2). 

In order that Equation (8.2) has a solution which at 5 = k 1 satisfies 
the conditions (9.5), is subject to damping as 5 - - ap and which at < = 0 
satisfies the two conditions (9.2), it is necessary to satisfy certain 
compatibility relations, the significance of which will be explained in 
Section 10, between conditions (9.5) and (9.2). 
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10. If we discard terms with a superscript (s - 2) in the first two 

equalities of (7.1)) we obtain the two equations 

(10.1) 

which, amongst others, must be satisfied by the quantities R,,(‘). 

We carry out the following integration operations on equalities 
(lO.l)_, the first operation being performed on the first equality and 
the second operation being performed on the second equality: 

Where necessary the order of integration will be altered and the differ- 

ential sign will be taken out from under the integral sign. ‘Iben, taking 
into account the homogeneous boundary conditions (1.3) and considering 
that the damping condition can be treated as the requirement that at 

E = - m all the stresses and displacements vanish, we obtain: from the 
first of equalities (10.1) 

ydc \ o$ ]ezO dc = 0, or y @!I”I) 1 5=. dc = 0 (10.2) 

-1 -1 -1 
0 t1 

If we carry out the operation _f de J d( on the second of equalities 

(lO.l), we find that 
-a, -1 

+I 

s I & dc = 0 (IO.31 

-1 E=O 

13y virtue of (1.3) we have that 

and consequently, 

(10.4) 

In certain cases equalities (10.2) to (10.4) constitute the compati- 
bility relations. They indicate the requirements that must be imposed on 
the boundary values (at < = 0) of IY~~~) and vrzii), if these quantities 
are given by boundary conditions (3.2 f , in order that a solution to the 
problem of finding R,iS’ can be obtained in which no discontinuities 
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occur at the edges of the plate (5 = 0, 5 = + 1). 

Note. Equalities (10.2) and (10.3) have a simple physical meanins. 

The first expresses the vanishing of the bending moment produced by the 

normal stresses 0,: I”’ on the edges, and the second expresses the vanish- 

ing of the shear force created by the shear stresses -rXz~~) on the edges. 

We shall denote the compatibility relations by 

A 

taking this as a relation 

has the boundary value P. 

write 

as follows: 

[cp (y, 5); PI = 0 (10.5) 

which the function ~(y, 5) must satisfy if it 

For example, with the aid of (10.2), we can re- 

+1 s Cg4 = 0 
-1 

The s olic notation of (10.5) will be used in those cases when 

P = uIis P or P = WI;‘), although the question of how these equalities 

can be made more specific is still unsolved. 

11. Let us consider the following five variants of the boundary con- 
ditions on the edges of the plate: 

0, - 0, zxu= 0, z,, = 0 (11.1) 

U = 0, U = 0, w=o (11.2) 

U = 0, T*v = 0, w=o (11.3) 

a, = 0, 2, = 0, w=o (11.4) 

0, = 0, z,, = 0, w=o (11.5) 

It is assumed throughout that the edge lies along the line r = 0 and 

that the plate is situated on the side of negative values of x. 

In the classical theory of plates the edge on which such boundary con- 

ditions apply is considered as a free edge in the case of (ll.l), as 

fully fixed in cases (11.2) and (11.3) and as hinged in cases (11.4) and 

(11.5). 

It is perhaps more natural to represent total fixity by the three- 

dimensional boundary conditions (11.2), and a hinged support by the 

three-dimensional boundary conditions (11.5), but for purposes of 



1014 A.L. Go1 ‘denveizer 

comparison, boundary conditions (11.3) and (11.4) will be used. 

It csn easily be shown that in the present problem the boundary con- 

ditions 

%c, I<=0 = 0, d&z I a&* = 0 

are equivalent to each other. In fact, in a solution which satisfies the 
second condition, T 
since this quantity':s 

at 5 = 0 must be constant with respect to 5, and 
zero at 5 = f 1, the first equality must be satis- 

fied. 

The equivalence of the boundary conditions 

can be proved in the same way, since u is assumed to be an odd function 
of 5. 

An obvious corollary of these conclusions is the equivalence of both 
of the two pairs of boundary conditions 

(%I =o,z,, =O), (u = 0, w = 0) (11.6) 

respectively to the following two pairs of boundary conditions 

12. It will be assumed that the stresses and displacements are-corn- 
posed of the sums of three terms corresponding to the basic iteration 
process and two variants of the auxiliary processes. In other words, we 
assume that the stresses and displacements can be expressed as follows: 
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w = h-3 z) h*--’ (zQ,(~) + w*(s)) + j~-A”+z x /f-l (~~(8) + wI*t8)) + 

+ h-p+q g-1 (g_Q @f + KiII *tsff (12.1) 

The sxumnation here is everywhere carried out with respect to integer 

values of s, starting with s - 1. 

Similarly, we can write down expressions for T and ypr appearing in 
(Il.71 

Here we have taken into account that by virtue of (3.31, f6.1) to 

(6.3) 

We have also made use of the notations 

It should be remembered that quantities distinguished by an asterisk 
vanish for s = 1, 2, and therefore in (12.21, in the expressions 
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2 g-3 Q’ ) 2 hS-3TI*w 

the first two terms disappear, and these summations, as well as all the 
others, start from terms containing h to the power zero. 

On the right-hand sides of Formulas (12.1) and (12.2) the numbers h 
and v are as yet unknown, and the method of imposing the boundary condi- 
tions will be as follows. Expressions (12.1) and (12.2) are substituted 
into the boundary conditions, the numbers A and ~1 are chosen in some way 
and the coefficients of equal powers of h on the right- and left-hand 
sides of each boundary condition taken separately are equated. 

As a result a succession of boundary relations is obtained, the form 
of which depends on the choice of the numbers h and u. l’he values of h 
and p must be chosen in such a way that the succession of boundary rela- 
tions is consistent with the differential equations which are satisfied 
in each approximation by quantities associated with some particular 
iteration process. 

13. Let us apply this method to boundary conditions (11.1) to (11.5). 
From (ll.l), putting h = 2, u = 2, we obtain a succession of boundary 
relations 

%$I 
f;z,(3) + z”(8) + q*(3) - -& (Z,$ + Z~yj ) + ---gf-- = 0 

Here the first pair of boundary conditions (11.6) have been replaced 

by the first pair of (11.7). 

From (11.2), putting h = 1, IA = 3, we obtain 

z&II (2) = 0, . * . 

T 0 , * * . (13.2) 

= I... 0 
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Here the second pair of boundary conditions (11.61 has been replaced 
by the second pair of (Xl.?). 

From (11.31, putting h = 2, CI = 3, we find that 

wp = 0, w&Z) = 0, w*(3) + w*@)+ 2uJp= 0, . . * 

The boundary conditions here have been rearranged as in (11.21. 

From (11.51, putting h = 2, M = 3, we obtain 

‘Ihe compatibility of the boundary relations (13.11 to (13.5) is 
proved below. 

14. Each succession of boundary relations (13.1 to (13.5) consists of 
equalities which form three groups corresponding to the number of bound- 
ary conditions. Tfie first and third groups can be looked upon as equa- 
tions defining the boundary values of quantities distinguished by the 
additional subscript II. hn exception in certain cases occurs in one or 
two of the first equalities in each group where these quuontities do not 

appear. For quantities distinguished by the subscript II the compati- 
bility conditions (10.5) must be satisfied. ‘Ibis enables us to write two 
groups of supplementary relations for each of the boundary conditions 
fll.11 to Ill.5f. 

For the boundary conditions (13.1) the supplementary relations are 
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(14.1) E - $ T,(2) = 0, . . . 

A ,&(3) + ~*(3) + q*(3) _ ‘?, 
( 

ei I 

) --r = 

s--- 

Here, in writing out the compatibility relations A = 0 we have made 
use of Formulas (10.2) and (10.4). Also, the first equality in each 

group of boundary relations, in which o,:;’ does not appear, has been 
re-written here after dividing by < (as is done in all subsequent 
supplementary relations). 

For the boundary conditions (13.2) and (13.3) we obtain 

z+(i) = 0, A (- f;u,@), ~~~(1)) = 0 

A (- &(3) - a* (3). - ju+l), ~~~(3)) = 0, . . . (14.2) 

W&l) = 0, W,(2) = 0. A (- W&s) - w*(3), w,,q = 0, . . . 

In the third of these equalities we must put j = 0 for boundary con- 

ditions (13.2) and j = 1 for boundary conditions (13.3). 

For the boundary conditions (13.4) we obtain 

A (- &s$‘, a,(;;) F - ; a,:) = 0, A (-G&c?, 

A (- &_$’ _ c,*c3) _ o&(3) - a,‘;‘, c,ty) = - ; I&~) - 

+1 
- 

s 
5 (o,*(3) + ox.~3) + a$‘) & = 0 . . . (14.3) 

-1 
WOW == 6, W”(Z) zzz 0, A (- 43) _ w*(3), ~~~(1)) = 0 . . . 
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and for boundary conditions (13.5) we find that 

A (- &-$’ - cs,*13) - ~,.j’) - a$‘, a$) zzi 

(14.4) 

?&(l) = 0, 7,@l = 0 t A (- 43) - w*(3), ~~~(1)) = 0 . . . 

15. In the series (12.1) and (12.2) quantities of the type Qi(*) are 
functions of the two variables (x, y), and for each particular value of 
s satisfy a system of equations equivalent to one biharmonic equation. 
This means that Qi”) can be expressed for every value of s in terms of 
a biharmonic function B”) of the variables (x, y). 

@antities of the type Q*(S) are , the coefficients 
of which can be expressed by Qtl’, P 

olynomials in 

(3) . . 
Q ‘I, . . . . Qcs- i; ‘. Since Q(r), Qf2’, 

Q . are determined successively (in numerical order of super- 
scribts), it follows that in finding Qts) or, what amounts to the same 
thing, in determining B(‘), the quantities Q*(s) can be considered to be 
known. 

Quantities of the type R,(” can be expressed for every value of s in 
terms of a biharmonic function Y (‘) 
of the type R,:” 

of the variables (5, 51. Quantities 
can be expressed for every value of s in terms of a 

biharmonic function CD’ ‘) 
the type A;(‘) and R;: ‘) 

of the variables (<, 5). Finally, quantities of 
can be expressed, respectively, in terms of 

Ri” , Fq), . ..) Rise2’ and R,:‘), RI:“, . . . . R,is-2’. ‘Ihis means 

that in finding Ytsf quantities of the type RftS) can be considered to 
be known, and likewise for quantities of the type R;iSf in the determina- 
tion of @(“. 

Thus we are able to find the functions B”), Y( ‘I, 0’ s, the boundary 
conditions for which are formed by relations (13.1) to (13.5) and (14.1) 
to (14.4). 

In determining B”“, Bt2’, . . . the boundary conditions can be ob- 
tained by using equalities of corresponding numbers from the first and 
second ~;yps of supplementary relations (14.1) to (14.4). In finding 
y’l’ an equality of the correspondinm number from the second 
groui If bbundary relations (13.1) to (13.5) isoused for the boundary 
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conditions. In determining Q(l), UJ”‘, . . . the boundary conditions are 
obtained from equalities of corresponding numbers from the first and 
third groups of boundary relations (13.1) to (13.5), discarding those 
equalities that do not contain quantities of the type Qris) (they are in- 
cluded in the supplementary relations). 

For the boundary conditions (11.11, (11.3) and (11.5) the functions 
B(S), y(s), $(S) must be determined in the following order: 

B(l), Y(l), P), (Y(2), CD(l), /?‘3’), . . . (15.1) 

The fourth, fifth and sixth functions are bracketed, which means that 

in some cases the order in which these function are determined should be 
altered, and in other cases all three functions must be determined 

simultaneously. 

In determining B’ ‘I, I’ ‘I, I?“) th e 0 owing equalities (written in f 11 
square brackets for each of these three functions) form the boundary con- 
ditions: 

for boundary conditions (11.1) 

B(1) + fa,\i) = 0; @=Ol, Y(l) -+ [@,btl’ + zx$ = 01 

for boundary conditions (11.3) 

jj’“! ---, [u 0) zz 0; w($l) ‘; 01, Y(l) -+ [ @$; + z.$; = 01, 

p ---f [A f- &tp’; &l(l)) = 0; w*@f = O] 

for boundary conditions (11.5) 

(15.2) 

(15.3) 

(15.4) 

For boundary conditions (11.2) the functions B(‘), Y(f), @(‘) must be 
determined in the following order: 

@I) B(2) p 
1 , , 

($1) 
, 

y(1) , . . . (15.5) 
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and the boundary conditions are given by the equalities 

For the boundary conditions (11.4) all of the relations (15.6) are 
retained with the exception of the first boundary condition which applies 
to the function Bt3’. It has the form 

A (- &l(3) - u*(3) _ u/l); ~~2~)) = 0 

In this connection only B(l) in (15.5) 
R(2) 

, 
B’3’ @, y(lJ 

is determined independently; 

, must be determined simultaneously. 

16. We will now show that every approximate basic iteration process 
taken separately is equivalent to an analysis of the plate on the basis 
of the classical theory. We shall make use of the definitions 

Sh 

l%f,‘8’ =h*-3 s z@xi (') dz (xv), 
Sh 

vx(*) = /f-2 +h 2x$) dz 

s 
W, 

-h 

The quantities M, (s), M (‘), H(‘), Y (‘), V (‘I have an obvious 

physical meaning: they are’in fact the &xnentsYand shear forces produced 
by stresses corresponding in the sth approximation of the basic itera- 
tion process to the general solution of the homogeneous equations. 

We replace the functions ox\‘), a,~*), -rry!S), r,,~“‘, ryz~Sf in 

(16.1) by their expressions given by (3.2); taking into account (2.1) 
and the last of formulas (3.6), we obtain 

ilp = $-‘a_$ (W), H@) = 2 h*-lr,lf;) 
3 

+1 

v, = _ ; h”-IT,!“’ - hs-’ \ z,;“’ & <xy) 

-1 

Substituting this result into (3.3), we obtain: 

(16.2) 
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(16.3) 

In making the sth approximation the quantities with an asterisk and a 
superscript (s - 1) can be taken as known. In $iftio:tS;aking into 
account formulas (3.6), we can also consider ‘cIz 
(16.3) as known quantities. 

’ ?yz and oz~8’ in 
Thus IZxpressions (16.3) are the equations of 

the clas&yl theory of plates. 
T*(8) 

In these expressions the terms containing 

’ Tyr 
and a,ks) represent the externally applied forces and 

mZents respectively. 

For s = 1 we have that vti8) = 0, v;i”’ = 0, 4ozi8)= p and the con- 
ditional load applied to the plate coincides with that considered in an 
analysis based on the classical theory. 

For s = 2 we have that v*(8) = 0, v*(8) = 0, o$” = 0 and the condi- 
tional load vanishes. For s”; 2 the coGitiona1 forces and moments in the 
sth approximation depend on the stresses of the (s - 2)th approximation. 
‘Ihe conditional load intensity diminishes as s increases according to 
the law h”‘. 

The boundary conditions required for finding the biharmonic function 
$1) are given by (15.2) to (15.4) and (15.6). In these equalities v1 (1) 

can be expressed according to Formula (12.3) and ul(l) can be written in 
terms of w@(l) with the aid of (3.3). Taking this into account and 
making use of Formulas (16.2), we obtain: 

the boundary conditions corresponding to a free edge 

the boundary conditions corresponding.to a fully fixed edge 

a&o) I dx = 0, UN = 0 

and the boundary conditions corresponding to a simply-supported edge 

M$ = 0, z.&) = 0 

It follows that the first approximation of the basic iteration 
process is equivalent to the classical theory of plates, in the identity 
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not only of the differential equations, but also of the boundary con- 
ditions. 

17. The most significant corollary of the preceding results is that 
the state of stress set up in a thin plate in bending is composed of a 
basic state of stress, a state of stress due to edge torsion and a state 
of stress due to plane deformation at the edges. 

The basic state of stress corresponds to the basic iteration process. 

In general, it covers the whole plate and as a first approximation co- 
incides with the state of stress corresponding to the hypotheses of the 
classical theory of plates. The states of stress due to edge torsion and 
plane deformation at the edges correspond to the first and second variants 
of the auxiliary iteration process. They have only a local effect near 

the edges of the plate or near other lines of.distortion and as a first 
approximation coincide, respectively, with the states of stress set up 
by torsion or plane deformation of a narrow strip along the given line of 
distortion. 

All of these states can be found as a first approximation by making 
use of the usual physical hypotheses, and with the aid of a basic itera- 

tion process and two variants of the auxiliary process they can be found 
for sufficiently small values of h to any degree of accuracy (this state- 
ment is conditional. since the present paper does not cover the question 

of evaluating errors). 

The problem of formulating various approximate methods for solving 
problems in the theory of plates can now be treated as one of finding a 
certain number of approximations in the iteration processes described 
above. In particular, the classical theory from this point of view can be 
looked upon as an approximate method based on the application of one 
basic iteration process for which only the first approximation is made. 
With this approach it is necessary to take into consideration the 
auxiliary iteration processes, i.e. iteration processes based on the 
integration of differential equations in which one of the independent 
variables is 5. This is the principal difference between the suggested 
approach and those which have been adopted so far. These have always led 
to the integration of equations with independent variables (x, y) defin- 
ing a point in the middle plane. In this connection, it would now be 
difficult to compare the proposed method with methods such as that 
suggested by Reissner [Zl. However, a purely qualitative coincidence will 
be noted. The equations obtained in making the classical theory more 
exact contain additional integrals corresponding to rapidly damped states 
of stress. 

18. Without going into the detafls of actually deriving the functions 
B(S), y(s), (J(s) ‘ we shall conclude with a few remarks of a general 
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nature. 

We obtained the Formulas (2.3), (2.4) in which, as was shown in 
Section 3, we must put u = 0. These relations define the asymptote of 
the basic state of stress, i.e. the rate of increase or decrease of its 
components of stress or displacement as h tends to zero. The main 
stresses (those which increase more rapidly than the others) of the 
basic state of stress are ox, vry, ay. They increase as h- 2. We shall 
write this as follows: 

=x, z 
KY 

oy - h-2 (18.1 j 

The asymptote of the states of stress due to edge torsion and plane 
deformation at the edges is defined by Formulas (4.2, (4.3) and (4.2), 
(4.4), respectively. It is found from these relations that in the state 
of stress due to edge torsion the main stresses are -r 

XY’ TYZ’ 
where 

(18.2) 

and in the state of stress due to plane deformation at the edges the 

main stresses are uX, a y’ TXZ’ cJz* where 

Comparing (18. l), (14.2) and (18.3)) we conclude that with h = 2 and 
N = 3 the main stresses in the states of stress due to edge torsion and 
plane deformation at the edges are not of the same order as the main 
stresses of the basic state of stress. But it was shown in Section 13 
that at least one of the quantities h, u assumes these values for any of 
the boundary conditions considered above. This means that the edge 
stresses (or, in general, the stresses near lines of disturbance) cannot 
be found even to a first approximation by means of one basic iteration 

process, or. consequently, by means of the classical theory. 

In order to find more accurate values of stresses at points distant 

from the edges by the proposed method, it is sufficient to make the 
first two approximations in the basic iteration process. In most cases 
it is considerably more difficult to find the edge stresses even to a 
very crude approximation. To do so, it is necessary to find the first 
approximation of all three iteration processes, i.e. to determine B(I), 
yr(lf , @‘l’, but the functions Y(l), @(“, as is shown in Section 15, are 
rather far apart in the successions which determine the order of finding 
8(S), y(s), (b(s) 

The boundary conditions (11.2) and (11.3)) which are different from 
the point of view of the three-dimensional theory of elasticity, must 
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in the classical theory of plates be treated as the same, as conditions 

of full fixity. Similarly, (11.4) and (11.5) are two distinct three- 

dimensional examples of conditions of hinged support. It can be shown 
that in the succession of functions B(‘), ‘f(‘), @(‘) only B(” is in- 
dependent of the choice of variant of the three-dimensional boundary con- 
ditions corresponding to a given condition of fixity. This means that 

only within the framework of the classical theory of plates can we use 

such general concepts as a fully fixed edge, a hinged support, etc. In 
deriving methods which aim at greater accuracy these concepts must be 

made far more definite. 

In order to simplify the computations in the auxiliary iteration pfo- 

cesses it was assumed that an edge of the plate lies in the plane x = 0. 

It is not difficult, however, to generalize this to the case when the 

edge is in any position, since the main results can easily be formulated 

in terms which are independent of the chosen coordinate system. 
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